Antibacterial titanium plate deposited by silver nanoparticles exhibits cell compatibility

نویسندگان

  • Juan Liao
  • Mo Anchun
  • Zhimin Zhu
  • Yuan Quan
چکیده

Microbial colonization and biofilm formation on the surface of implant devices may cause peri-implantitis and lead to bone loss. The aim of this study was to develop a novel antibacterial titanium implant surface and to test its biological performance. In a previous study, we demonstrated that titanium plates deposited by nanosilver acquired antibacterial activity to Staphylococcus aureus and Escherichia coli. While antibacterial activity is important, biomaterial surfaces should be modified to achieve excellent cell compatibility as well. In the present study, using the MTT assay, fluorescence microscopy, and scanning electron microscopy, we assessed cell viability, cytoskeletal architecture and cell attachment, respectively, on our silver nanoparticle-modified titanium (Ti-nAg) plate. The results demonstrate that the Ti-nAg do not show any cytotoxicity to the human gingival fibroblasts. Our data indicate that Ti-nAg is a novel material with both good antibacterial properties and uncompromised cytocompatibility, which can be used as an implanted biomaterial.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Antimicrobial properties and dental pulp stem cell cytotoxicity using carboxymethyl cellulose-silver nanoparticles deposited on titanium plates

Objective: To evaluate the antimicrobial properties and dental pulp stem cells (DPSCs) cytotoxicity of synthesized carboxymethyl cellulose-silver nanoparticles impregnated on titanium plates. Material and methods: The antibacterial effect of silver nanoparticles in a carboxymethyl cellulose matrix impregnated on titanium plates (Ti-AgNPs) in three concentrations: 16%, 50% and 100% was determine...

متن کامل

Deposition of silver nanoparticles on titanium surface for antibacterial effect

Microbial colonization on implanted devices and biofilm formation is a recurrent complication in implant surgery and may result in loss of implants. The aim of this study was to deposit silver nanoparticles on a titanium surface to obtain antibacterial properties. In the present study, we prepared a silver nanoparticle-modified titanium (Ti-nAg) surface using silanization method. The morphology...

متن کامل

Antibacterial titanium plate anodized by being discharged in NaCl solution exhibits cell compatibility.

Implant surfaces should be modified to achieve excellent cell compatibility as well as antibacterial activity. Our previous study demonstrated that titanium plates anodized by being discharged in NaCl (Ti-Cl) exhibited high antibacterial activity. Since Ti-Cl was prepared with a NaCl solution, we hypothesized that Ti-Cl would exhibit low toxicity toward cells. The aims of this study were to cha...

متن کامل

Investigation of the electrical properties and corrosion resistance of TiN coating deposited by reactive sputtering on the titanium bipolar plate, used in polymeric fuel cell

The effect of titanium nitride film on the properties of titanium bipolar plates used in polymeric fuel cell was investigated in this research. TiN coatings was deposited on the Ti-grade 1 substrate by using DC-sputtering method. Pure titanium was used as target and coating deposition was done in argon and nitrogen atmosphere. Different TiN thickness was developed by changing sputtering time. T...

متن کامل

Bio-fabrication of silver nanoparticles using Rosa Chinensis L.extract for antibacterial activities

The purpose of this study was to expand a trouble free biological method for the synthesis of silver nanoparticles (AgNPs) using the leaves extract of Rosa ChinensisL. to act as reducing and stabilizing agent. Water soluble phytochemicals played a vital role for the reduction silver ions into silver nanoparticles. The leaves extract was exposed to silver ions and the resultant biosynthesized Ag...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2010